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1 Coalescent simulation

Coalescent simulation was done by msHOT (Hudson, 2002; Hellenthal and Stephens, 2007). An-
cestral population sizes used in simulation are shown in the main paper. The scaled mutation and
recombination rates were set to those inferred from YH. One hundred 30Mbp diploid sequences
were simulated with the same parameters. We call this simulation the standard simulation as it
follows a standard coalescent-with-recombination process (Hudson, 1983; Griffiths and Marjoram,
1996). The ms command is:

ms 2 100 -t 81960 -r 13560 30000000 -eN 0.01 0.05 -eN 0.0375 0.5 -eN 1.25 1

1.1 Alternative simulation

To verify PSMC, we also tried five alternative demographic history (namely, sim-1, sim-2, sim-3,
sim-YH, sim-split and sim-split2, respectively):

ms 2 100 -t 30000 -r 6000 30000000 -eN 0.01 0.1 -eN 0.06 1 -eN 0.2 0.5 -eN 1 1 -eN 2 2
ms 2 100 -t 3000 -r 600 30000000 -eN 0.1 5 -eN 0.6 20 -eN 2 5 -eN 10 10 -eN 20 5
ms 2 100 -t 60000 -r 12000 30000000 -eN 0.01 0.05 -eN 0.0150 0.5 -eN 0.05 0.25 -eN 0.5 0.5
ms 2 100 -t 65130.39 -r 10973.82 30000000 -eN 0.0055 0.0832 -eN 0.0089 0.0489 \

-eN 0.0130 0.0607 -eN 0.0177 0.1072 -eN 0.0233 0.2093 -eN 0.0299 0.3630 \
-eN 0.0375 0.5041 -eN 0.0465 0.5870 -eN 0.0571 0.6343 -eN 0.0695 0.6138 \
-eN 0.0840 0.5292 -eN 0.1010 0.4409 -eN 0.1210 0.3749 -eN 0.1444 0.3313 \
-eN 0.1718 0.3066 -eN 0.2040 0.2952 -eN 0.2418 0.2915 -eN 0.2860 0.2950 \
-eN 0.3379 0.3103 -eN 0.3988 0.3458 -eN 0.4701 0.4109 -eN 0.5538 0.5048 \
-eN 0.6520 0.5996 -eN 0.7671 0.6440 -eN 0.9020 0.6178 -eN 1.0603 0.5345 \
-eN 1.4635 1.7931

ms 2 100 -t 10000 -r 2000 10000000 -I 2 1 1 -n 1 1 -n 2 1 -ej 0.06 2 1 -n 0.06 1
ms 2 100 -t 10000 -r 2000 10000000 -T -l -I 2 1 1 -eM 0 4 -eN 0 1 -en 0.01 1 0.1 \

-eM 0.06 0 -ej 0.06 2 1 -eN 0.06 1 -eN 0.2 0.5 -eN 1 1 -eN 2 2

where sim-1 (Figure S1a) represents a history similar to the PSMC estimate for non-African pop-
ulations, sim-2 (Figure S1b) evaluates if the large recent population size is an innate defect of our
PSMC model; sim-3 (Figure S1c) shows the accuracy given a very sharp bottleneck; sim-YH (Fig-
ure S1d) checks if PSMC may recover the history estimiated by itself (the blue line in the figure
is the PSMC estimate for CHN.A); sim-split (Figure S1e) shows the PSMC estimate given two
constant-sized populations split at 60kya; sim-split2 (Figure S1f) simulates a little more plausible
history between African and non-African populations with one population going through a severe
bottleneck but the other not.

To quantify the accuracy of the PSMC estimate, we define the following metric:

d(t0, t1) =
1

log t1 − log t0

� t1

t0

|N0(t)−N1(t)|
N0(t) +N1(t)

dt

t

which is the averge fraction difference in the logarithm scale in the interval [t0, t1). Due to the
way d is defined, it is not affected by the scaling of t and N . We computed d(10kya, 2Mya) for
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simulations without admixtures. The following table gives the result:

Simulation Figure d(10kya, 2Mya)
plain Figure 2a 0.13
sim-1 Figure S1a 0.10
sim-2 Figure S1b 0.10
sim-3 Figure S1c 0.12

sim-YH Figure S1d 0.06

In general, PSMC does well in recovering the history, although it may smooth out steep changes
in the population size. In addition, the simulation implies that PSMC is reasonably good at
estimating the time when two populations split (Figure S1d). After this split point, there are no
coalescences, which PSMC reflects as an infinite population size.
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Figure S1: PSMC estimate on simulated data as in Section 1.1.
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1.2 Simulation with uniform SNP ascertainment errors
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Figure S2: Effect of SNP ascertainment errors. (a) Uniform false heterozygotes. (b) Uniform missing
heterozygotes.

The SNP ascertainment may have errors. To see how PSMC performs on data with false SNPs,
we randomly added 10% more heterozygotes to the sequence generated by the standard simulation
and then run PSMC to estimate the history. We see that adding uniform false heterozygotes (FP)
increases the TMRCA in all time frames and pushes the estimate away from the origin along the X
axis (Figure S2a). Adding FP also breaks long recent segments and decreases the number of recent
recombinations, which has a similar effect to increased recent population sizes.

Insufficient read depth may lead to missing heterozygotes in an essentially uniform manner. To
simulate this scenario, we uniformly changed 10% of heterozygotes to homozygotes on the sequence
generated from the standard simulation. We see that the estimate given missing heterozygotes (FN)
is shifted toward the origin (the green curve in Figure S2b). Fortunately, FN is largely equivalent
to lower neutral mutation rate µ. We can correct for FN by reducing µ (the blue curve).

1.3 Simulation with long hypermutated regions

Balancing selection or false heterozygotes caused by segmental duplications may lead to exces-
sively long segments with high heterozygosity. To see the effect of these segments, we simulated
three 30Mbp diploid sequences with mutation rate 10 times higher than that used in the standard
simulation. The ms command is:

ms 2 3 -t 819600 -r 13560 30000000 -T -eN 0.01 0.05 -eN 0.0375 0.5 -eN 1.25 1

We mixed the three sequences with the 100 sequences generated from the standard simulation and
run PSMC to infer population sizes. Figure S3 indicates that these hypermutated segments may
lead to excessively large ancient population sizes, but the rest of curve is essentially unaffected.

1.4 Simulation with variable mutation rates

1.4.1 Calculating regional human-macaque mutation rate

We downloaded the 4-way EPO alignment between human, chimpanzee, orangutan and macaque
from Ensembl FTP1 (v50) and converted the EMF format to Multiple Alignment Format (MAF)
with emf2maf.pl2 available from Ensembl’s EURS repository. We excluded alignments containing
paralogous regions and removed the columns containing gaps or ambiguous bases in either human
or macaque. 2,156,898,990 columns remained on autosomes with 130,132,715 substitutions. We
calculated the mean divergence in each 20Kbp sliding window with a step 100bp. Windows with
less than 10,000 columns in the EPO alignment were dropped. 24,102,686 windows were left after

1ftp://ftp.ensembl.org/pub/release-50/emf/ensembl-compara/epo 4 catarrhini/
2http://cvs.sanger.ac.uk/cgi-bin/viewcvs.cgi/*checkout*/ensembl-compara/scripts/dumps/emf2maf.pl
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Figure S3: Effect of long hypermutated regions.

this process. The mean substitution rate of these windows is 6.03% with a standard deviation
0.76%. Figure S4 shows the substitution rate as a function of coordinate on chromosome 6.
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Figure S4: Substitution rate as a function of coordinate on human chromosome 6. The curve was smoothed
with the Bezier method provided by gnuplot.

1.4.2 Simulating sequences under variable mutation rate

After calculating the regional mutation rate, we got at each position i on the human genome a pair
of values (ai, ri) ∈ {0, 1}×�+, where ri is the average mutation rate in the 20Kbp window between
[i− 10000, i+10000] divided by the overall substitution rate 0.0603, and ai indicates whether such
a window is dropped in calculation as is described in the previous section.

In simulation, we randomly extracted 30Mbp region from the human genome starting from i and
generated a 30Mbp diploid sequence as follows. Given the k-th position on the simulated sequence,
we attached an ambiguous base ‘N’ if ai+k equals 0; if ai+k equals 1, we attached a heterozygote
with a probability e−θtkri+k or a homozygote otherwise. Here θ is the scaled mutation rate used in
simulation and tk is the TMRCA at position k according to the local coalescent tree given by ms
in the standard simulation.

1.5 Simulation with recombination hotspots

To simulate recombination hotspots, we obtained the hotspot map from HapMap Release 21. We
generated three hundred 10Mbp sequences with the hotspots on each sequence drawn from a ran-
domly selected 10Mbp region from the hotspot map. We assumed the recombination rate in each
hotspot is ten times higher than the non-hotspot regions.

Note that our PSMC model essentially uses the distribution of heterozygosity to infer parame-
ters, while local variation in recombination rate has little effect on this distribution. Therefore our
model is robust to hotspots as is shown in Figure 2 in the main text.

1.6 Simulation with structured population

1.6.1 Structured population and effective population size

Assume in a constant-sized population the ancestral population split into two equal-sized subpop-
ulations at time t which joined back at time s (s < t). The probability that two lineages at time s
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coalesce before t is (1− e−2(t−s))/2, which is the probability that the two lineages are chosen from
the same subpopulation and then coalesce before t. In contrast, in a constant-sized population
without structure, the probability of two lineages at s coalescing before t is 1− e−(t−s). We have

�
1− e−(t−s)

�
− 1

2

�
1− e−2(t−s)

�
=

1

2

�
1− e−(t−s)

�2
> 0

which means coalescences occur less frequently in the structured population, and the longer the
split the more significant the effect. As having fewer coalescences is equivalent to a larger effective
population size, the effective population size in the structured population between time s and t is
larger than the sum of the sizes of the two sub-populations.

1.6.2 Effect of structured population

We took the PSMC estimate on the YRI autosomes, changed the original estimate by removing
the hump in the size history between 30 and 600kya, and added population split and admixture
in a simulation to study the effect of structured population. We assumed at 250kya the ancestral
population split into two subpopulations with equal sizes which admixed to one at 60kya. The sum
of the sizes of the subpopulations remain the same across 60-250kya. The ms command-line for
this simulation is:

ms 2 100 -t 104693 -r 13862 30000000 -T -eN 0.0052 0.2504 \
-eN 0.0084 0.1751 -es 0.0172 1 0.5 -en 0.0172 1 0.08755 \
-en 0.0172 2 0.08755 -ej 0.0716 2 1 -eN 0.0716 0.1833 \
-eN 0.1922 0.1885 -eN 0.2277 0.2022 -eN 0.2694 0.2295 \
-eN 0.3183 0.2754 -eN 0.3756 0.3367 -eN 0.4428 0.3939 \
-eN 0.5216 0.4190 -eN 0.6141 0.4104 -eN 0.7225 0.3954 \
-eN 0.8496 0.3998 -eN 0.9987 0.5144 -eN 1.3785 1.8311

Figure S5a shows that during the period of population split, PSMC predicts a larger effective
population size than the sum of sizes of sub-populations. The effect is stronger if the population
split into three smaller subpopulations (Figure S5b). This is expected in theory given the discussion
in the previous section. The ms command line used in Figure S5b is:

ms 2 100 -t 104693 -r 13862 30000000 -T -eN 0.0052 0.2504 \
-eN 0.0084 0.1751 -es 0.0172 1 0.33333 -es 0.0172 2 0.5 -en 0.0172 1 0.08755 \
-en 0.0172 2 0.08755 -ej 0.0716 3 2 -ej 0.0716 2 1 -eN 0.0716 0.1833 \
-eN 0.1922 0.1885 -eN 0.2277 0.2022 -eN 0.2694 0.2295 \
-eN 0.3183 0.2754 -eN 0.3756 0.3367 -eN 0.4428 0.3939 \
-eN 0.5216 0.4190 -eN 0.6141 0.4104 -eN 0.7225 0.3954 \
-eN 0.8496 0.3998 -eN 0.9987 0.5144 -eN 1.3785 1.8311

1.7 Simulation from Schaffner et al. (2005)

We estimated the population history on diploid sequences simulated from the best fit model by
Schaffner et al. (2005) which considers variable recombination rates, recombination hotspots, mi-
gration and gene conversion. PSMC still works reasonably well (Figure S6). However, the recon-
structions from simulated data are not able to reproduce the mild bottleneck 20–60kya that we
observe in he African (YRI) data, or very large ancestral population size beyond 1Mya as is seen
in real data. In addition, even given the migrations between Asian and African populations in the
simulation, PSMC predicts a sudden rise in population size right at the split of African and Asian
populations around 52kya (Figure S6b, orange line), which is different from the estimate from the
NA18507-CHN pseudo-diploid X chromosome comparison, showing that the extended genetic ex-
change we observe between Africa and Asia in the real data is not produced by the method if the
real final split time is earlier.
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Figure S5: Effect of population split and admixture. (a) population split to two equal-sized subpopulations
at 250kya which admixed at 60kya. (b) population split to three equal-sized subpopulations. In both panels,
the red curves are the original PSMC estimate on YRI autosomes. The green curves show the ancestral
population size used in ms simulation, or the sum of subpopulation sizes during the population split. The
thin green lines indicate the period of population split and the size of each subpopulation. The blue curves
give the PSMC estimates on the simulated sequences.
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Figure S6: PSMC estimate on data simulated from the best fit model by Schaffner et al. (2005). (a) Asian
diploid genome. (b) African diploid genome and African-Asian hybrid genome. In both figures, vertical
short blue lines indicate the position of bottlenecks in simulation with inbreeding coefficient (F ) labeled
nearby.

2 PSMC inference for data sets

2.1 PSMC inference for human individuals

We have also applied the PSMC method on the two trios sequenced by the 1000 Genomes Project,
as well as the COLO-829-BL genome (European ancestry; Pleasance et al., 2010) and the NA18506
and NA18508 genomes (SRA009225 and SRA009347, respectively). Figure S7a and S7c indicates
that the PSMC results on automsomes are highly consistent except for the very recent history,
demonstrating the power of using whole-genome data. Estimates on X chromosomes (Figure S7b
and S7d) are noisier, but estimates from similar ancestry still well agree with each other.

2.2 PSMC inference for orangutan individuals

We downloaded from the Short Read Archive the short read sequences for three orangutan indi-
viduals (Locke et al., 2011), two Borneans (KB5404 and KB4204) and one Sumatran (KB5883),
and processed the data in the same way as we processed the human sequences (i.e. alignment with
BWA and consensus calling with SAMtools). As KB4204/Bornean2 and KB5883/Sumatran are
both males, we are able to construct a pseudo-diploid X chromosome to investigate the divergence
time between the two Orangutan species.
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Figure S7: (a) PSMC estimate for Yoruban autosomes. (b) Estimate for Yoruban X chromosome. (c) Esti-
mate for non-African autosomes. (d) Estimate for non-African X chromosomes (e) Block bootstrapping for
Korean autosomes (KOR.A). Thin green lines represent 100 rounds of resampling. (f) Block bootstrapping
for Korean-Chinese combined pseudo-diploid X chromosome (KOR-CHN.X).
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Figure S8: PSMC inference for three individuals from two orangutan species, Bornean and Sumatran.
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Figure S8 shows the PSMC estimate of the population size history of the two species. Notably,
although KB5404/Bornean1 has much more data, the inferred history is nearly identical to that of
KB4204/Bornean2 when the false negative rate is considered, which again reveals the robustness
of PSMC. From the figure, Sumatran (the blue curve) may appear to deviate from Bornean (the
red and green curves) a few million years ago, but the relatively small population size inferred from
the pseudo-diploid X chromosome (the purple curve) between 500kya and 5Mya indicates that the
ancestral populations of Bornean and Sumatran largely remained as one population in this period.
The effective population size inferred from the X chromosome started to increase several hundred
thousand years ago and rapidly went to infinity at 300kya or so, which should imply that the process
of speciation of the two orangutan species may last hundreds of thousands of years, and the final
gene flow may occur around 300kya, consistent with the estimate of 334 ± 145kya by Locke et al.
(2011) using the coal-HMM method (Hobolth et al., 2007).

3 Other potential artifacts in PSMC estimate

3.1 Rescaling to real time

Species Substitutions (%) Divergence time (Mya) mutation per-year (×10−9)
Chimpanzee 1.31 7 0.94
Orangutan 3.28 18 0.91
Macaque 6.03 25 1.21

Table S1: Mutation rate per site per year between human and other primates. Pairwise substitution rates
are estimated based on the Ensembl 4-way EPO whole-genome alignment. Human-chimp divergence time
is taken from Patterson et al. (2006), human-orangutan from Satta et al. (2004), and human-macaque
from Rhesus Macaque Genome Sequencing and Analysis Consortium (2007).

The TMRCA estimated by the PSMC model is in the units of mutation per site. To rescale
TMRCA in the units of years, we need to know the mutation rate per site per year, which can be
estimated by using closely related species. Table S1 implies that in primates, the mutation rate
is broadly around 10−9 per site per year, the rate we used in rescaling the PSMC estimate (we
assumed a 2.5 × 10−8 mution rate per site per generation and a 25-year generation time, which is
translated to a 1.0× 10−9 mutation rate per site per year).

However, recent direct measurement using whole genome sequences in pedigrees suggest that in
the individuals examined the mutation rate per site per generation approaches 10−8 (Roach et al.,
2010; 1000 Genomes Project Consortium, 2010), twice smaller than the rate we use. Nonetheless,
what matters for population genetic based methods such as PSMC is the time average. A compar-
atively small fraction of higher mutation rates could change this average significantly. We therefore
feel that although direct measurements are clearly valuable, there are not enough yet to change the
mutation rates used in population genetic based analyses.

3.2 Inaccuracy in scaled recombination rate

PSMC is not good at inferring recombination events that result in small changes in TMRCA (Fig-
ure S9). Thus it may systematically underestimate the recombination rate. In the standard sim-
ulation, the ratio of scaled mutation rate and recombination rate (θ/ρ) is set to 5, but the PSMC
estimates this ratio as 8.63 ± 0.10, significantly deviating from 5. However, as seen in Figure S1,
this underestimate of the scaled recombination rate does not seem to affect the accuracy of the
PSMC estimate.

On real data, PSMC estimates that there are 2.3× 105 recombination events from the Chinese
autosomes, which amounts to 12kbp unrecombined blocks in average. The average length of unre-
combined blocks drops to 10kbp for a Yoruban genome due to the larger effective population size.
However, due to the underestimated recombination rate by PSMC, the true length of unrecombined
blocks should be smaller.
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Figure S9: Estimating recombination events. PSMC tends to miss recombination events that lead to small
changes in TMRCA.

3.3 Effect of ambiguous bases

Most of the sequences in the telomere and centromere regions are not present in the human reference
genome or highly repetitive. They appeared as ‘N’s in the input of PSMC. To see whether long
stretches of ‘N’s may affect the PSMC estimate, we remove contiguous N longer than 100Kbp and
split the input sequence there. The resulting estimate is almost identical to that without this
preprocessing (Figure S10).
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Figure S10: Effect of ambiguous bases.

3.4 Effect of the ratio of male-to-female mutation rate

There are debates about the value of the ratio of male-to-female mutation rates α (Ebersberger
et al., 2002; Makova and Li, 2002; Taylor et al., 2006; Burgess and Yang, 2008), which may affect
time scaling of the estimate on X chromosomes, given that:

µX = µA · 2(2 + α)

3(1 + α)

Nonetheless, for α ranged between 2 and 5, µX only varies slightly from 2.22× 10−8 to 1.94× 10−8

if we assume µA = 2.5× 10−8, and may not impact our conclusion (Figure S11).

3.5 Convergence of Baum-Welch iteration

We apply 20 rounds of Baum-Welch iterations from the constant-sized history. Figure S12a shows
that the bottleneck between 11–50kya is obvious even after a single round of iteration. Estimate
between 50kya–2Mya takes more iterations to get stabilized, but the estimate is not changed much
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Figure S11: Effect of the ratio of male-to-female mutation rate (α).

after the 10th iteration. In addition, although the likelihood of the data continues to increase after
30 iterations, the goodness of fit (GOF) statistics G10 gets worse after 20 (Figure S12b), which
implies that applying more iterations may lead to overfitting.
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Figure S12: Convergence and goodness of fit (GOF) of PSMC estimate. (a) PSMC estimate given different
rounds of iterations. (b) Log likelihood (log-LK) and GOF as a function of iterations, starting from
constant-sized history.
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3.6 Effect of coding regions

In comparison to non-coding regions, coding regions are expected to be subjected to purifying
selection, which may further affect the heterozygosity of the flanking regions. To see if selection
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around coding regions may change the PSMC estimate, we acquired the GenCode annotation of
human genes and masked out all exons plus their 10kbp (5kbp on each side of an exon) flanking
regions. About 1.0Gbp sequences were masked consequently. The observed heterozygosity in the
regions left after masking is 5% higher than the genome average. Figure S13 implies that if we
correct for this difference in mutation rate, the PSMC estimates from all autosomes and from
non-coding regions are nearly identical.

4 Comparison to previous studies

4.1 Inbreeding coefficient

The probability that two lineages coalesce in the time interval [s, t) is:

F (s, t) = 1− e−
� t
s

du
λ(u)

where λ(t) = N(t)/N0 is the relative population size and the time scale is the number of generations
divided by 2N0 (Griffiths and Tavare, 1994). F (s, t) is called the inbreeding coefficient or the
intensity between time s and t.

4.2 Other studies on population divergence and the size history

Table S2 shows the divergence time between African and non-African populations, the timing and
strength of the bottleneck, estimated in other studies. All the estimates are based on nuclear DNA
data.

It is clear that the divergence time between African and non-African populations varies greatly
between studies. This is mostly caused by the assumptions of the basic demographic models.
Garrigan et al. (2007), Fagundes et al. (2007) and Cox et al. (2008) assume population is reduced
immediately following the divergence of African and non-African populations. Forced by the timing
of the population reduction, these models are unlikely to predict deep divergence time. The very
recent divergence time by Cox et al. (2008) may also be related to the use of X chromosome data
exclusively. On the other extreme end, Gutenkunst et al. (2009) infer a very deep divergence
time, but they also infer a large migration rate (2.5 × 10−4) between 140kya and 21.2kya, which
compensates for the early population split. Another possible cause of the difference is the different
data ascertainment procedures (e.g. autosomal data vs. X-linked data, noncoding only vs. full
gene sequences, and genotyping vs. resequencing).

Most of the studies in Table S2 broadly agree on the timing and the strength of the reduc-
tion/bottleneck, even though some (Marth et al., 2004; Keinan et al., 2007; Wall et al., 2009)
model this by a piecewise constant history, some (Adams and Hudson, 2004; Garrigan et al., 2007;
Cox et al., 2008) by reduction followed by exponential growth and some (Schaffner et al., 2005;
Gutenkunst et al., 2009) by a mixture of reduction and bottlenecks. The differences between these
results can be contributed to the assumptions made in the demographic models; the difference in
ascertainment procedures may also be a major cause given that similar methods/models may lead
to different conclusions (e.g. Marth et al. (2004) vs. Keinan et al. (2007)). Our PSMC model
does not explicitly infer the bottleneck. Nonetheless, when we generated an AFS from our CHN.A
estimate and fit the AFS with a 3-epoch model (Marth et al., 2004), we got a bottleneck between
12–40kya with an inbreeding coefficient 0.36, consistent with other studies. However, when we
applied the same method to YRI.A, we are unable to recover the mild bottleneck in YRI, which
may indicate that the lack of African bottleneck in AFS-based studies might be due to the lack of
power in fitting the AFS.

As to the comparison with individual studies, the PSMC estimates on YRI.A and CHN.A well
agree with Schaffner et al. (2005) in that the PSMC estimates on data simulated from the best-fit
model are very similar to the estimates on real data (Figure S6). Nonetheless, the recent genetic
exchanges inferred from YRI-CHN.X disagree. This is possibly because Schaffner et al. (2005)
assume a uniform migration rate after the out-of-African event, while our model implies a large
migration rate beyond 20kya but a low rate afterwards, more similar to the model by Gutenkunst
et al. (2009).
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In contrast to the variability of the studies using nuclear DNA, studies using mitochondrial DNA
(mtDNA) (Ingman et al., 2000; Macaulay et al., 2005) are highly consistent, probably because of
the similarity in the demographic model and data processing as well. These studies found that
the M and N mtDNA haplogroups coalesced around 60kya. However, timing with mtDNA using
the current method gives the genetic divergence which predated the population divergence. In
addition, it is possible to infer the population size history from mtDNA (Atkinson et al., 2008), but
the variance is large as mtDNA is short.

4.3 Comparison to the palaeoanthropological evidence

Fossil evidence supports that anatomically modern humans had migrated to Europe during 41–
46kya (Mellars, 2006b), to Malaysia by around 45kya (Barker et al., 2002) and to Australia by
at least 45kya (Stringer, 2002; Mellars, 2006a). Although anatomically human fossils identified at
Skhul and Qafzeh in Israel were dated back to 100–135kya (Vanhaereny et al., 2006), this migration
is believed to be early unsuccessful dispersal by some researchers (Mellars, 2006a).

On the other hand, several studies using nuclear DNA placed the East Asian-European di-
vergence around 17–25kya (Keinan et al., 2007; Garrigan et al., 2007; Gutenkunst et al., 2009).
Our PSMC estimate from the combined Venter and YH X chromosomes is also very recent (Fig-
ure S7d). This leads to the apparent inconsistency with the fossil evidence that anatomically modern
human have spread across the continent by at least 40kya. One of the possible explanations is that
during the Last Glacial Maximum at about 20kya, the non-African populations retreated south-
ward (Forster, 2004), and gene flows may have occurred between the different populations again.
Under this hypothesis, the recent gene flow between YRI.X and KOR.X would be reasonable, al-
though autosomal data from more populations are needed to further confirm the existence of the
recent gene flow.
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The Pairwise Sequentially Markovian Coalescent Model

Heng Li and Richard Durbin

24 January 2008

This document gives the mathematical basis for the PSMC, including all necessary theorems
and equations, with discussion. Lemma 1 and 2 give two general facts which will be used later.
Theorem 1 proves several central results of the continuous-time PSMC model. This theorem estab-
lishes the foundation of the whole PSMC theory. Corollary 4 and Remark 2 show how to calculate
or approximate various probabilities when time is discretized. Remark 4 presents the construction
of HMM, and Remark 6 and 8 explain several catches in implementation. Remarks 9-11 show
methods on estimating the variance and testing the goodness of fit (GOF).

1 PSMC: The Pairwise Sequentially Markovian Model

1.1 General Fomulae

This section presents two lemmas for general functions. Lemma 1 will be used to prove the nor-
malization of the conditioned transition probability in the PSMC continuous-time Markov chain;
Lemma 2 will be used to derive the stationary distribution of coalescent time.

Lemma 1. Given

f(t|s) = h(t)

� min{s,t}

0

g(u)� s
0 g(w) dw

· e−
� t
u h(v) dv du (1)

where g(t) and h(t) are any functions that can be integrated on [0,∞), the following equation always
stands: � ∞

0
f(t|s) dt = 1

Proof. Let:
t = φ(t̃)

and

g̃(ũ) =
g(φ(ũ))

h(φ(ũ))

where φ(t̃) satisfies φ(0) = 0 and
φ�(ũ) · h(φ(ũ)) = 1

The integral becomes:

f(t|s) dt = f(φ(t̃)|φ(s̃))
h(φ(t̃))

dt̃ =

�min{s̃,t̃}
0 g̃(ũ)e−(t̃−ũ)dũ

� s̃
0 g̃(ũ)dũ

dt̃

If we note that for any g(t) that can be integrated:

� ∞

0
e−vdv

� min{v,t}

0
g(u)eu du

=

� t

0
g(u)eudu

�� t

u
e−vdv +

� ∞

t
e−vdv

�

=

� t

0
g(u) du

1



always stands, we get:

� ∞

0
f(t|s) dt =

� ∞

0

�min{s̃,t̃}
0 g̃(ũ)e−(t̃−ũ)dũ

� s̃
0 g̃(ũ)dũ

dt̃ = 1

Lemma 2 (Stationary distribution). Let:

π(t) =
h(t)

C
e−

� t
0 h(v)dv

� t

0
g(u) du (2)

where C is a scaling constant:

C =

� ∞

0
g(u)e−

� u
0 h(v)dv du (3)

The following equations always stand:
� ∞

0
f(t|s)π(s) ds = π(t)

� ∞

0
π(t) dt = 1

Proof.
� ∞

0
f(t|s)π(s) ds

=
h(t)

C

� ∞

0

ds� s
0 g(w) dw

·
�
h(s)e−

� s
0 h(v)dv

� s

0
g(w) dw

� � min{s,t}

0
g(u) e−

� t
u h(v)dv du

=
h(t)

C

� ∞

0
h(s)e−

� s
0 h(v)dvds

� min{s,t}

0
g(u) e−

� t
u h(v)dv du

=
h(t)

C

� t

0
g(u) e−

� t
u h(v)dv du

� ∞

u
e−

� s
0 h(v)dvh(s) ds

=
h(t)

C

� t

0
g(u) e−

� t
u h(v)dv du

� ∞

u
d
�
− e−

� s
0 h(v) dv

�

=
h(t)

C

� t

0
g(u) e−

� t
u h(v)dv e−

� u
0 h(v)dv du

=
h(t)

C
e−

� t
0 h(v)dv

� t

0
g(u) du

i.e.: � ∞

0
f(t|s)π(s) ds = π(t)

Then π(t) is the density of the stationary distribution. Furthermore, as we require that

1 =

� ∞

0
π(t) dt

=

� ∞

0

h(t)

C
e−

� t
0 h(v)dv dt

� t

0
g(u) du

=

� ∞

0
g(u) du

� ∞

u

h(t)

C
e−

� t
0 h(v)dv dt

=
1

C

� ∞

0
g(u) du

� ∞

u
d
�
− e−

� t
0 h(v) dv

�

=
1

C

� ∞

0
g(u)e−

� u
0 h(v)dv du

the constant C can thus be calculated.
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1.2 List of Symbols

Symbol Type Meaning

a, b discrete Coordinate on the sequence

t, s,∆ continuous Coalescent time

Ta continuous, r.v. Coalescent time at a
Ra binary, r.v. Recombination or not between a and a+ 1

Xa binary, r.v. Mutation or not at a
N,N0 continuous Population size

λ,λ0 continuous Relative population size

θ, θ0 continuous Per-site mutation rate

ρ, ρ0 continuous Per-site recombination rate

p, q function transition probability

i, j, k, l discrete State of the HMM

u, v, w continuous Coalescent time (in integration)

C,Cπ, Cσ continous Scaling constant

1.3 PSMC Model

In this section, Theorem 1 estabilishes the foundation of the PSMC continuous-time Markov chain.

It gives the equations of transition, and the stationary distribution. The following corollaries show

how to approximate the constants in the Theorem when the scaled mutation and recombination

rates are small.

The discrete-time Markov chain, which will be presented in the next section, is derived from the

continuous-time Markov chain by integrating probability desities in time intervals.

Theorem 1 (PSMC). Let the population size be:

N(t) = N0λ(t)

where t equals the number of generations divided by 2N0. The scaled mutation rate and recombi-
nation rate per nucleotide are θ and ρ. respectively. Given two haplotypes, let Ta be the coalescent
time at position a ∈ [1, L], and define:

Ra =

�
1 a recombination happens between a and a+ 1

0 otherwise

Λ(t) =

� t

0
λ(u) du

Cπ =

� ∞

0
e−

� u
0

dv
λ(v) du (4)

Cσ =

� ∞

0

π(t)

1− e−ρt
dt (5)

According to the SMC (Sequentially Markov Coalescent) model (McVean and Cardin, 2005; Marjo-
ram and Wall, 2006), the following equations stand:

q(t|s) dt = Pr{Ta+1 = t|Ta = s,Ra = 1} =
dt

λ(t)

� min{s,t}

0

1

s
· e−

� t
u

dv
λ(v) du (6)

π(t) = Pr{Ta+1 = t|Ra = 1} =
t

Cπλ(t)
e−

� t
0

dv
λ(v) (7)

p(t|s) = Pr{Ta+1 = t|Ta = s} = (1− e−ρs
)q(t|s) + e−ρsδ(t− s) (8)

σ(t) = Pr{Ta = t} =
π(t)

Cσ(1− e−ρt)
(9)

3



Pr{Ra = 1} =
1

Cσ
(10)

Furthermore, � ∞

0
q(t|s)π(s) ds = π(t) (11)

� ∞

0
p(t|s)σ(s) ds = σ(t) (12)

and � ∞

0
q(t|s) dt =

� ∞

0
p(t|s) dt =

� ∞

0
π(t) dt =

� ∞

0
σ(t) dt = 1 (13)

Proof. Equation 6 is the root of all the other equations.

1. When a recombination happens, the probability that it happens in [u, u+ du) is:

P1(u|s) du =
1

s
du

At time u, two alleles coalesce at [t, t+ dt) is (Hein et al., 2005; Griffiths and Tavare, 1994):

P2(t|u) dt =
1

λ(t)
exp

�
−
� t

u

dv

λ(v)

�
dt

When we know s and t, u ∈ [0,min{s, t}). Then:

q(t|s) =
� min{s,t}

0
P2(t|u) · P1(u|s) du =

1

λ(t)

� min{s,t}

0

1

s
· e−

� t
u

dv
λ(v) du

This proves Equation 6.

2. In Lemma 1 and Lemma 2, let g(u) = 1 and h(u) = 1/λ(u). We have:

� ∞

0
q(t|s) dt = 1

� ∞

0
q(t|s)π(s) ds = π(t)

This proves Equation 7 and 11.

3. Equation 8 comes naturally, and
� ∞

0
p(t|s) = (1− e−ρs

)

� ∞

0
q(t|s) dt+ e−ρs

= 1

� ∞

0
p(t|s)σ(s) ds =

1

Ca

� ∞

0
(1− e−ρs

)
q(t|s)π(s)
1− e−ρs

ds+
e−ρt

Cσ(1− e−ρt)
π(t)

=
π(t)

Cσ(1− e−ρt)

= σ(t)

This proves Equation 9 and 12.

4. Given coalescent time Ta = t, the probability that a recombination happens between a and

a+ 1 is:

Pr{Ra = 1|Ta = t} = 1− e−ρt

Then

Pr{Ra = 1} =

� ∞

0
(1− e−ρt

)σ(t) dt =
1

Cσ

This proves Equation 10.
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Corollary 1 (Approximating Cσ). When ρ0 is sufficiently small:

Cσ =
1

Cπρ
+

1

2
+ o(ρ) (14)

Proof.

Cσ =

� ∞

0

t

Cπλ(t)[1− e−ρt]
e−

� t
0

dv
λ(v) dt

=
1

Cπρ

� ∞

0

�
1 +

ρt

2
+ o(ρ2)

� 1

λ(t)
e−

� t
0

dv
λ(v) dt

=
1

Cπρ

� ∞

0

1

λ(t)
e−

� t
0

dv
λ(v) dt+

1

2

� ∞

0
π(t) dt+ o(ρ)

=
1

Cπρ
+

1

2
+ o(ρ)

Corollary 2 (Rate of pairwise difference). When both θ0 and ρ0 are sufficiently small:

Pr{Xa = 1} = Cπθ ·
�
1 + o(ρ+ θ)

�
(15)

Proof.

Pr{Xa = 1} =

� ∞

0
Pr{Xa = 1|Ta = t}Pr{Ta = t} dt

=

� ∞

0
(1− e−θt)σ(t) dt

=
1

Cσ

�
1− e−θt

1− e−ρt
π(t) dt

=
1

Cσ

�
θ + o(θ2)

ρ+ o(ρ2)
π(t) dt

=
θ

Cσρ

� �
1 + o(ρ+ θ)

�
π(t) dt

= Cπθ ·
�
1 + o(ρ+ θ)

�

Corollary 3 (First-order approximation). Under the first-order approximation with respect to θ
and ρ, the following equations stand:

Pr{Ra = 1} =
1

Cπ
= Cπρ

Pr{Xa = 1} = Cπθ

σ(t) =
1

λ(t)
e−

� t
0

dv
λ(v)

� t

0
σ(u) du = 1− e−

� t
0

dv
λ(v)

Remark 1 (Distribution of segment lengths). Let La+1 be the length of the segment following
a recombination occurring at a. Conditional on the recombination, La+1 follows a exponential
distribution (more precisely, a geometric distribution in fact):

Pr{La+1 = l|Ra = 1, Ta+1 = t} dl = ρte−ρtl dl
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Then,

Pr{L = l} dl = dl

� ∞

0

ρt2e−ρtl

Cπλ(t)
e−

� t
0

dv
λ(v) dt = dl

ρ

Cπ

� ∞

0
e−

� t
0

dv
λ(v) d

�
t2e−ρtl

�

The mean segment length is thus

� ∞

0
ρtle−ρtl dl

� ∞

0

t

Cπλ(t)
e−

� t
0

dv
λ(v) dt

=
1

Cπρ

� ∞

0

1

λ(t)
e−

� t
0

dv
λ(v) dt

=
1

Cπρ
≈ Cσ

1.4 Discrete-Time PSMC Model

This section presents the discrete-time PSMC Markov Chain, its transition probabilities between
time intervals and the stationary distribution. The proof of Corolary 4 is given in the Appendix.

Corollary 4 (Discrete-time PSMC). Let

0 = t0 < t1 < · · · < tn < tn+1 = ∞

Assume in each time interval [tk, tk+1) function λ(t) is a constant λk. Define:

πk =

� tk+1

tk

π(t) dt

σk =

� tk+1

tk

σ(t) dt

qkl =
1

πk

� tk+1

tk

ds

� tl+1

tl

q(t|s)π(s) dt

pkl =
1

σk

� tk+1

tk

ds

� tl+1

tl

p(t|s)σ(s) dt

Then:

πk =
1

Cπ

�
(αk − αk+1)

� k−1�

i=0

τi + λk

�
− αk+1τk

�

σk =
1

Cσ

�
1

Cπρ
(αk − αk+1) +

πk

2
+ o(ρ)

�
(16)

Furthermore, for l < k:

qkl =
αk − αk+1

Cππk

�
(αl − αl+1)

�
βl −

λl

αl

�
+ (tl+1 − tl)

�

for l = k:

qkl =
1

Cππk

�
(αk − αk+1)

2
�
βk − λk

αk

�
+ 2λk(αk − αk+1)− 2αk+1(tk+1 − tk)

�

and for l > k:

qkl =
αl − αl+1

Cππk

�
(αk − αk+1)

�
βk − λk

αk

�
+ (tk+1 − tk)

�

6



and
pkl =

πk

Cσσk
qkl + δkl

�
1− πk

Cσσk

�
(17)

where:
τk = tk+1 − tk

αk = exp

�
−

k−1�

i=0

ti+1 − ti
λi

�

βk =
k−1�

i=0

λi

� 1

αi+1
− 1

αi

�

Cπ =
n�

k=0

λk(αk − αk+1)

Remark 2 (Mutation probability). The average mutation probability in an interval [tk, tk+1) cannot
be analytically calculated. But we can seek another way. From Equation 17, a recombination occurs

in [tk, tk+1) as if it occurs at time − log
�
1 − πk/(Cσσk)

�
/ρ. If we assume mutation also exactly

occurs at this time point, the probability of a mutation is:

ek(1) = exp

�
− θ

ρ
log

�
1− πk

Cσσk

��
=

�
1− πk

Cσσk

�θ/ρ
(18)

Remark 3 (Determining N0). If we know µ, the neutral mutation rate, N0 = θ/4µ. On autosomes,
µ is typically 2.5× 10−8 (Nachman and Crowell, 2000). Note that Equation 15 agrees with Marth
et al. (2004) in case of two haplotypes.

2 PSMC Hidden Markov Model

2.1 The basic of HMM

Remark 4 (PSMC-HMM). We denote a hidden state in the HMM by k, which means a coalescence
between the two haplotypes at this point in the sequence lies in the time interval [tk, tk+1). A
mutation is emmitted with a probability ek(1) (Equation 18) and the transition probability is pkl
(Equation 17). The stationary distribution of the hidden states is {σk} (Equation 16). All these
parameters can be analytically approximated with a precision of order-two Taylor expansion when
ρ0 is sufficiently small.

Remark 5 (PSMC-PHMM). It is possible to use PSMC to approximately model two diploid se-
quences. In this case, a hidden state is (k, l) and the transition probability of (k, l) → (k�, l�) is
pkk�pll� . The stationary distribution of hidden states is {σkσk�}.
Remark 6 (Missing data). Missing data can be easily incorporated into an HMM. When there is
no observation at a, ek(xa) = 1 for all k.

Remark 7 (Choosing time intervals). We choose a set of {ti}i=0...n that are approximately evenly
distributed in the log space, but because we require t0 = 0, the intervals will not strictly evenly
distributed. In practice, we set

ti = 0.1(e
i
n log(1+10Tmax) − 1)

where Tmax = tn is chosen such that no more than a few percent of coalescences occur beyond
Tmax.

Remark 8 (Reducing parameters). In principle, we can estimate all the n + 1 values of λk with
EM. However, at both small and large t, the expected number of segments is very small. Separate
estimates of λk in these intervals will lead to overfitting due to insufficient data. An effective way
to tell whether overfitting occurs is to check Cσπk, the expected number of segments in the interval

7



[tk, tk+1). If this number is small (less than 20, for instance), the λk estimated from EM cannot be

trusted due to statistical fluctuations. In this case, we should use fewer free parameters by using

the same λ spanning several adjacent intervals. This will lower the resolution but will yield much

better estimation.

2.2 Assessing variance and fitness

Remark 9 (Bootstrapping). The variance can be estimated by boostrapping. We split the input

diploid sequence into L�-long non-overlapping segments and randomly resample the segments with

replacement to generate a new diploid sequence of the same length as the original one. Parameters

are then estimated from the new sequence. We repeat this process B times and regard the variance

of the B resampled estimates as the variance of the estimate on the original sequence. Typically,

we take L� = 30, 000, 000 and B = 100.

Remark 10 (Measuring GOF with σk). On one hand, from Equation 16 we can calculate σk from free

parameters of the model without looking at the data. On the other hand, from forward-backward

algorithm we can estimate the posterior expectation of the occurences ĉk of state k:

ĉk =
1

P (D)

�

i

fk(i)bk(i)

Normalizing ĉk gives:

σ̂k =

�
i fk(i)bk(i)�
k,i fk(i)bk(i)

where fk(i) is the forward function of sequence position i and state k and bk(i) is the backward

function. If the model fits the data, we would expect to see {σ̂k} is identical to {σk}. And therefore

the relative entroy D(σ||σ̂) would be an indicator of GOF:

Gσ
=

�

k

σk log
σk

σ̂k

Remark 11 (Measuring GOF with l-long subsequences). MacKay Altman (2004) pointed out we

can test GOF by comparing the distribution of l-long subsequences from direct calculation with the

observed distribution. Given an integer n ∈ [0, 2l − 1], let {pn} be the theoretical distribution of

the binary sequence represented by n and let {p̂n} be the one directly counted from the observed

sequence. The relative entroy between them is:

Gl =

2l−1�

n=0

pn log
pn
p̂n

which measures GOF. Typically, l is ranged from 10 to 20.

A Proof of Corollary 4

Proof.

Cπ =

� ∞

0
e−

� u
0

dv
λ(v) du =

n�

k=0

αk

� tk+1

tk

e−
u−tk
λk du =

n�

k=0

λk(αk − αk+1)
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πk =

� tk+1

tk

π(t) dt

=
1

Cπ

� tk+1

tk

dt

λ(t)
e−

� t
0

dv
λ(v) · t

=
1

Cπλk

� tk+1

tk

αke
− t−tk

λk

�
k−1�

i=0

τi + (t− tk)

�
dt

=
αk

Cπλk

�
k−1�

i=0

τi

� tk+1

tk

e−
t−tk
λk dt+

� tk+1

tk

(t− tk)e
− t−tk

λk dt

�

=
αk

Cπλk

�
λk

k−1�

i=0

τi
�
1− e−

τk
λk

�
+ λ2

k

� τk
λk

0
ue−udu

�

=
αk

Cπ

�
k−1�

i=0

τi
�
1− e−

τk
λk

�
+

�
λk − λke

− τk
λk − τke

− τk
λk

��

=
1

Cπ

�
(αk − αk+1)

� k−1�

i=0

τi + λk

�
− αk+1τk

�

σk =

� tk+1

tk

σ(t) dt

=

� tk+1

tk

1

Cσ(1− e−ρt)
· t

Cπλ(t)
e
� t
0

dv
λ(v) dt

=
1

CσCπρ

� tk+1

tk

�
1 +

1

2
ρt+ o(ρ2)

� 1

λ(t)
e
� t
0

dv
λ(v) dt

=
1

CσCπρ

�� tk+1

tk

1

λ(t)
e
� t
0

dv
λ(v) dt+

1

2
Cπρ

� tk+1

tk

π(t) dt+ o(ρ2)

�

=
1

Cσ

�
1

Cπρ
(αk − αk+1) +

πk

2
+ o(ρ)

�

qkl =
1

πk

� tk+1

tk

ds

� tl+1

tl

q(t|s)π(s) dt

=
1

Cππk

� tk+1

tk

1

λ(s)
e−

� s
0

dv
λ(v) ds

� tl+1

tl

dt

λ(t)

� min{s,t}

0
e−

� t
u

dw
λ(w) du

=
αk

Cππkλkλl

� tk+1

tk

e−
s−tk
λk ds

� tl+1

tl

dt

� min{s,t}

0
e−

� t
u

dw
λ(w) du

l < k:

qkl =
αk − αk+1

Cππkλl

� tl+1

tl

dt

�
e−

t−tl
λl

l−1�

i=0

αl

αi

� ti+1

ti

e
u−ti
λi du+

� t

tl

e−
t−u
λl du

�

=
αk − αk+1

Cππkλl

� tl+1

tl

dt

�
αle

− t−tl
λl

l−1�

i=0

λi

� 1

αi+1
− 1

αi

�
+ λl

�
1− e−

t−tl
λl

��

=
αk − αk+1

Cππk

��
1− αl+1

αl

�
βlαl + (tl+1 − tl)− λl

�
1− αl+1

αl

��

=
αk − αk+1

Cππk

�
(αl − αl+1)

�
βl −

λl

αl

�
+ (tl+1 − tl)

�
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l > k:

qkl =
αk

Cππkλk

� tk+1

tk

e−
s−tk
λk ds · (αl − αl+1)

�
βk +

λ2
k

αk

�
e

s−tk
λk − 1

��

=
αk(αl − αl+1)

Cππkλk

� tk+1

tk

e−
s−tk
λk ds ·

��
βk − λk

αk

�
+

λk

αk
e

s−tk
λk

�

=
αl − αl+1

Cππk

�
(αk − αk+1)

�
βk − λk

αk

�
+ (tk+1 − tk)

�

l = k:

qkl =
αk

Cππkλk

� tk+1

tk

e−
s−tk
λk ds ·

�
βk(αk − αk+1) + (s− tk)−

λkαk+1

αk

�
e

s−tk
λk − 1

��

=
αk

Cππk

� τk

0
e−u du ·

�
βk(αk − αk+1) +

λkαk+1

αk
+ λku− λkαk+1

αk
eu
�

=
1

Cππk

�
βk(αk − αk+1)

2 +
λk

αk
(αk − αk+1)(αk + αk+1)− 2τkαk+1

�

=
1

Cππk

�
(αk − αk+1)

2
�
βk − λk

αk

�
+ 2λk(αk − αk+1)− 2αk+1(tk+1 − tk)

�

pkl =
1

σk

� tk+1

tk

ds

� tl+1

tl

p(t|s)σ(s) dt

=
1

σk

� tk+1

tk

π(s) ds

Cσ(1− e−ρs)

�� tl+1

tl

(1− e−ρs)q(t|s) dt+ δkle
−ρs

�

=
1

Cσσk

� tk+1

tk

π(s) ds

� tl+1

tl

q(t|s) dt+ δkl
Cσσk

� tk+1

tk

� 1

1− e−ρs
− 1

�
π(s) ds

=
πkqkl
Cσσk

+
δkl

Cσσk

�� tk+1

tk

π(s) ds

1− e−ρs
− πk

�

=
πkqkl
Cσσk

+ δkl
�
1− πk

Cσσk

�
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